
EXCITED ELECTRONIC STATES USING GAMESS

- Singles CI
 - All single excitations from RHF ground state
 - Brillioun Theorem: $\langle \Psi_0 | H | \Psi_i^a \rangle = 0$
 - No improvement of ground state
 - Simplest level of theory for excited states
 - Accuracy ~ Hartree-Fock
 - Best for lowest lying excited states
 - Fails for states dominated by double excitations
 - Common for higher excited states

SINGLES CI

- In GAMESS
 - \$CONTRL CITYP=CIS ...\$END
 - -\$CIS
 - NSTATE=(# of states requested)
 - ISTATE=(choose one)
 - MULT=(spin multiplicity)
 - CISPRP={.T., .F.}
 - Generates properties for ISTATE
 - Requires calculation of density matrix
 - Can do geometry opts using analytic gradients

CISD

- All single and double excitations from RHF ground state
- Much more accurate than CIS
- Much more time-consuming than CIS
 - Requires (vv|oo) and (vo|vo) integrals
- Analytic gradients available
 - Very time-consuming

CISD

- In GAMESS
 - \$CONTRL CITYP=GUGA ...\$END
 - \$CIDRT
 - GROUP= (point group or subgroup)
 - IEXCIT=2 (CISD)
 - This will generate all single and double excitations
 - Can reduce the computational effort using
 - NFZV= (# omitted virtuals)
 - Not systematic

EOM-CC

- Equations of motion (EOM) coupled cluster
- Calculates excitation energies directly
 - More accurate than subtracting excited ground state
- Much more accurate than CIS
 - Options include EOM-CCSD(T), CR-EOM-CCSD(T)
 - Starting wave function can come from CIS or CISd
 - Small d means identify active space for doubles
- Much more time-consuming than CIS or CISD
- No analytic gradients

EOM-CC

- In GAMESS
 - \$CONTRL CCTYP=EOM-CCSD ...\$END
 - \$EOMINP
 - GROUP= (point group or subgroup)
 - MTRIP=
 - Method for triples
 - » 1=CR-EOMCCSD(T) standard
 - » 2=CR-EOMCCSD(T) iterative CISD starting point
 - » See manual for other options
 - MINIT=
 - Initial guess procedure for EOM procedure
 - » 1=CISd (see manual for options)
 - » 2=CIS

- Multi-reference CI
 - CI on top of MCSCF
 - FOCI (first order CI): All single excitations from each MCSCF determinant
 - SOCI (second order CI): All single & double excitations from each MCSCF determinant
 - Better than CIS or CISD since orbital space is reoptimized in MCSCF step

MRCI

In GAMESS

- Assume MCSCF was done in previous run, orbitals have been checked and read in using \$VEC
- \$CONTRL CITYP=GUGA
- \$CIDRT
 - GROUP= (point group or subgroup)
 - FOCI=.T. or SOCI=.T.

COMING TO GAMESS

- Time-dependent density functional theory (TDDFT)
 - Similar approach to EOM-CC
 - Similar level of theory to CIS, except based on DFT
 - Single excitations from Kohn-Sham determinant
 - More accurate than CIS since DFT better than HF
 - Fails for states dominated by double excitations
 - Like DFT, tough to predict success or failure

ISSUES FOR PHOTOCHEMISTRY

- Many excited electronic states of various spins
 - Surface crossings are common
 - Different spin states: intersystem crossings
 - Spin-orbit coupling (SOC) can be important
 - Several SOC methods in GAMESS
 - » Full all-electron (Breit-Pauli)
 - » Partial two-electron (P2E)
 - » One-electron Z_{eff} method
 - Same spin states
 - Born-Oppenheimer breakdown
 - Derivative (vibronic) coupling important
 - Both lead to radiationless transitions
 - Essential processes in photochem, photobiology 11